

≡ Heat of combustion

The **heating value** (or **energy value** or **calorific value**) of a <u>substance</u>, usually a <u>fuel</u> or <u>food</u> (see food energy), is the amount of heat released during the combustion of a specified amount of it.

The *calorific value* is the total <u>energy</u> released as heat when a substance undergoes complete <u>combustion</u> with <u>oxygen</u> under standard conditions. The chemical reaction is typically a <u>hydrocarbon</u> or other organic molecule reacting with oxygen to form <u>carbon dioxide</u> and <u>water</u> and release heat. It may be expressed with the quantities:

- energy/mole of fuel
- energy/mass of fuel
- energy/volume of the fuel

There are two kinds of enthalpy of combustion, called high(er) and low(er) heat(ing) value, depending on how much the products are allowed to cool and whether compounds like H_2O are allowed to condense. The high heat values are conventionally measured with a <u>bomb calorimeter</u>. Low heat values are calculated from high heat value test data. They may also be calculated as the difference between the <u>heat of formation</u> ΔH_f^{Θ} of the products and reactants (though this approach is somewhat artificial since most heats of formation are typically calculated from measured heats of combustion).^[1]

By convention, the (higher) heat of combustion is defined to be the heat released for the complete combustion of a compound in its standard state to form stable products in their standard states: hydrogen is converted to water (in its liquid state), carbon is converted to carbon dioxide gas, and nitrogen is converted to nitrogen gas. That is, the heat of combustion, ΔH^{o}_{comb} , is the heat of reaction of the following process:

$$C_{c}H_{h}N_{n}O_{o} (std.) + (c + \frac{h}{4} - \frac{o}{2}) O_{2} (g) \rightarrow cCO_{2} (g) + \frac{h}{2}H_{2}O (h) + \frac{n}{2}N_{2} (g)$$

Chlorine and sulfur are not quite standardized; they are usually assumed to convert to hydrogen chloride gas and SO₂ or SO₃ gas, respectively, or to dilute aqueous hydrochloric and <u>sulfuric acids</u>, respectively, when the combustion is conducted in a bomb calorimeter containing some quantity of water.^{[2][3]}

Ways of determination

Gross and net

Zwolinski and Wilhoit defined, in 1972, "gross" and "net" values for heats of combustion. In the gross definition the products are the most stable compounds, e.g. $H_2O(l)$, $Br_2(l)$, $I_2(s)$ and $H_2SO_4(l)$. In the

net definition the products are the gases produced when the compound is burned in an open flame, e.g. $H_2O(g)$, $Br_2(g)$, $I_2(g)$ and $SO_2(g)$. In both definitions the products for C, F, Cl and N are $CO_2(g)$, HF(g), $Cl_2(g)$ and $N_2(g)$, respectively.^[4]

Dulong's Formula

The heating value of a fuel can be calculated with the results of ultimate analysis of fuel. From analysis, percentages of the combustibles in the fuel (<u>carbon</u>, <u>hydrogen</u>, <u>sulfur</u>) are known. Since the heat of combustion of these elements is known, the heating value can be calculated using Dulong's Formula:

LHV [kJ/g]= 33.87m_C + 122.3(m_H - m_O ÷ 8) + 9.4m_S

where m_C , m_H , m_O , m_N , and m_S are the contents of carbon, hydrogen, oxygen, nitrogen, and sulfur on any (wet, dry or ash free) basis, respectively.^[5]

Higher heating value

The higher heating value (HHV; *gross energy, upper heating value, gross calorific value GCV*, or *higher calorific value; HCV*) indicates the upper limit of the available thermal energy produced by a complete combustion of fuel. It is measured as a unit of energy per unit mass or volume of substance. **The HHV is determined by bringing all the products of combustion back to the original pre-combustion temperature, and in particular condensing any vapor produced.** Such measurements often use a standard temperature of 25 °C (77 °F; 298 K). This is the same as the thermodynamic heat of combustion since the <u>enthalpy</u> change for the reaction assumes a common temperature of the compounds before and after combustion, in which case the water produced by combustion is condensed to a liquid. The higher heating value takes into account the <u>latent heat of vaporization</u> of <u>water</u> in the combustion products, and is useful in calculating heating values for fuels where <u>condensation</u> of the reaction products is practical (e.g., in a gas-fired <u>boiler</u> used for space heat). In other words, HHV assumes all the water component is in liquid state at the end of combustion (in product of combustion) and that heat delivered at temperatures below 150 °C (302 °F) can be put to use.

Lower heating value

The lower heating value (LHV; *net calorific value*; *NCV*, or *lower calorific value*; *LCV*) is another measure of available thermal energy produced by a combustion of fuel, measured as a unit of energy per unit mass or volume of substance. In contrast to the HHV, the LHV considers energy losses such as the energy used to vaporize water - although its exact definition is not uniformly agreed upon. One definition is simply to subtract the heat of vaporization of the water from the higher heating value. This treats any H_2O formed as a vapor. The energy required to vaporize the water therefore is not released as heat.

LHV calculations assume that the water component of a combustion process is in vapor state at the end of combustion, as opposed to the <u>higher heating value</u> (HHV) (a.k.a. *gross calorific value* or *gross CV*) which assumes that all of the water in a combustion process is in a liquid state after a combustion process.

Another definition of the LHV is the amount of heat released when the products are cooled to 150 °C

(302 °F). This means that the latent heat of vaporization of <u>water</u> and other reaction products is not recovered. It is useful in comparing fuels where condensation of the combustion products is impractical, or heat at a temperature below 150 °C (302 °F) cannot be put to use.

One definition of lower heating value, adopted by the <u>American Petroleum Institute</u> (API), uses a reference temperature of 60 °F (15% °C).

Another definition, used by Gas Processors Suppliers Association (GPSA) and originally used by API (data collected for API research project 44), is the <u>enthalpy</u> of all combustion products minus the enthalpy of the fuel at the reference temperature (API research project 44 used 25 °C. GPSA currently uses 60 °F), minus the enthalpy of the <u>stoichiometric</u> oxygen (O₂) at the reference temperature, minus the heat of vaporization of the vapor content of the combustion products.

The definition in which the combustion products are all returned to the reference temperature is more easily calculated from the higher heating value than when using other definitions and will in fact give a slightly different answer.

Gross heating value

Gross heating value accounts for water in the exhaust leaving as vapor, as does LHV, but gross heating value also includes liquid water in the fuel prior to combustion. This value is important for fuels like wood or coal, which will usually contain some amount of water prior to burning.

Measuring heating values

The higher heating value is experimentally determined in a <u>bomb calorimeter</u>. The combustion of a stoichiometric mixture of fuel and oxidizer (e.g. two moles of hydrogen and one mole of oxygen) in a steel container at 25 °C (77 °F) is initiated by an ignition device and the reactions allowed to complete. When hydrogen and oxygen react during combustion, water vapor is produced. The vessel and its contents are then cooled to the original 25 °C and the higher heating value is determined as the heat released between identical initial and final temperatures.

When the lower heating value (LHV) is determined, cooling is stopped at 150 °C and the reaction heat is only partially recovered. The limit of 150 °C is based on acid gas dew-point.

Note: Higher heating value (HHV) is calculated with the **product of water being in liquid form** while lower heating value (LHV) is calculated with the **product of water being in vapor form**.

Relation between heating values

The difference between the two heating values depends on the chemical composition of the fuel. In the case of pure carbon or carbon monoxide, the two heating values are almost identical, the difference being the sensible heat content of carbon dioxide between 150 °C and 25 °C (sensible heat exchange causes a change of temperature, while latent heat is added or subtracted for phase transitions at constant temperature. Examples: heat of vaporization or heat of fusion). For hydrogen, the difference is much more significant as it includes the sensible heat of water vapor between 150 °C and 25 °C. All in all, the higher heating value of hydrogen is 18.2% above its lower heating value (142 MJ/kg vs. 120 MJ/kg). For hydrocarbons, the difference depends on the hydrogen

content of the fuel. For gasoline and <u>diesel</u> the higher heating value exceeds the lower heating value by about 10% and 7%, respectively, and for natural gas about 11%.

A common method of relating HHV to LHV is:

$$\mathrm{HHV} = \mathrm{LHV} + H_\mathrm{v} \left(rac{n_\mathrm{H_2O,out}}{n_\mathrm{fuel,in}}
ight)$$

where H_v is the heat of vaporization of water, $n_{H_2O,out}$ is the number of moles of water vaporized and $n_{fuel,in}$ is the number of moles of fuel combusted.^[6]

- Most applications that burn fuel produce water vapor, which is unused and thus wastes its heat content. In such applications, the lower heating value must be used to give a 'benchmark' for the process.
- However, for true energy calculations in some specific cases, the higher heating value is correct. This is particularly relevant for <u>natural gas</u>, whose high hydrogen content produces much water, when it is burned in <u>condensing boilers</u> and <u>power plants</u> with <u>flue-gas condensation</u> that condense the water vapor produced by combustion, recovering heat which would otherwise be wasted.

Usage of terms

Engine manufacturers typically rate their engines fuel consumption by the lower heating values since the exhaust is never condensed in the engine, and doing this allows them to publish more attractive numbers than are used in conventional power plant terms. The conventional power industry had used HHV (high heat value) exclusively for decades, even though virtually all of these plants did not condense exhaust either. American consumers should be aware that the corresponding fuelconsumption figure based on the higher heating value will be somewhat higher.

The difference between HHV and LHV definitions causes endless confusion when quoters do not bother to state the convention being used.^[7] since there is typically a 10% difference between the two methods for a power plant burning natural gas. For simply benchmarking part of a reaction the LHV may be appropriate, but HHV should be used for overall energy efficiency calculations if only to avoid confusion, and in any case, the value or convention should be clearly stated.

Accounting for moisture

Both HHV and LHV can be expressed in terms of AR (all moisture counted), MF and MAF (only water from combustion of hydrogen). AR, MF, and MAF are commonly used for indicating the heating values of coal:

- **AR** (as received) indicates that the fuel heating value has been measured with all moisture- and ash-forming minerals present.
- **MF** (moisture-free) or **dry** indicates that the fuel heating value has been measured after the fuel has been dried of all inherent moisture but still retaining its ash-forming minerals.
- MAF (moisture- and ash-free) or DAF (dry and ash-free) indicates that the fuel heating value has been measured in the absence of inherent moisture- and ash-forming minerals.

Heat of combustion tables

Higher heating value

101

of s	of some less common fuels ^[o]								
Fuel	HHV			LHV	Fuel	MJ/kg	BTU/lb	kJ/mol	
	MJ/kg	BTU/lb	kJ/mol	MJ/kg	Methanol	22.7	9,800	726	
Hydrogen	141.80	61,000	286	119.96	Ethanol	29.7	12,800	1,367	
Methane	55.50	23,900	890	50.00	1-Propanol	33.6	14,500	2,020	
Ethane	51.90	22,400	1,560	47.62	Acetylene	49.9	21,500	1,300	
Propane	50.35	21,700	2,220	46.35	Benzene	41.8	18,000	3,268	
Butane	49.50	20,900	2,877	45.75	Ammonia	22.5	9,690	382.6	
Pentane	48.60	21,876	3,509	45.35	Hydrazine	19.4	8,370	622.0	
Paraffin wax	46.00	19,900		41.50	Hexamine	30.0	12,900	4,200.0	
Kerosene	46.20	19,862		43.00	Carbon	32.8	14,100	393.5	
Diesel	44.80	19,300		43.4	Note				
Coal (anthracite)	32.50	14,000			There is no difference between the lower and higher heating values for the combustion of carbon, carbon monoxide and sulfur since no water is formed during the combustion of those substances. BTU/lb values are calculated from MJ/kg				
Coal (lignite - USA)	15.00	6,500		•					
Wood (MAF)	21.70	8,700							
Wood fuel	21.20	9,142		17.0					
Peat (dry)	15.00	6,500							
Peat (damp)	6.00	2,500			(1 MJ/kg = 430 BTU/lb).				

Higher (HHV) and lower (LHV) heating values of some common fuels^[8] at 25 °C

Higher heating values of natural gases from various sources

The International Energy Agency reports the following typical higher heating values per Standard cubic metre of gas:^[10]

- Algeria: 39.57 MJ/Sm³
- Bangladesh: 36.00 MJ/Sm³
- Canada: 39.00 MJ/Sm³
- China: 38.93 MJ/Sm³
- Indonesia: 40.60 MJ/Sm³
- Iran: 39.36 MJ/Sm³
- Netherlands: 33.32 MJ/Sm³
- Norway: 39.24 MJ/Sm³
- Pakistan: 34.90 MJ/Sm³
- Qatar: 41.40 MJ/Sm³
- Russia: 38.23 MJ/Sm³
- Saudi Arabia: 38.00 MJ/Sm³
- Turkmenistan: 37.89 MJ/Sm³

kJ/mol

BTU/lb

21,504

20,551

19,934

19,673

Lower heating value for some organic compounds (at 25 $^{\circ}\text{C}$ [77 $^{\circ}\text{F}$])

Alkanes

MJ/L

6.9

_

_

25.3

MJ/kg

50.009

47.794

46.357

45.752

Fuel

Methane

Ethane

Propane

Butane

- United Kingdom: 39.71 MJ/Sm³
- United States: 38.42 MJ/Sm³
- Uzbekistan: 37.89 MJ/Sm³

The lower heating value of natural gas 802.34 is normally about 90% of its higher 1,437.2 heating value. This table is in Standard cubic metres (1 atm, 15 °C), to convert to values per Normal cubic metre 2,659.3 (1 atm, 0 °C), multiply above table by 3,272.6 1.0549.

Pentane	45.357	28.39	21,706	3,272.6	1.0549.	
Hexane	44.752	29.30	19,504	3,856.7		
Heptane	44.566	30.48	19,163	4,465.8	See also	
Octane	44.427	_	19,104	5,074.9	Adiabatic Chemistry n	ortal
Nonane	44.311	31.82	19,054	5,683.3	temperature	ortar
Decane	44.240	33.29	19,023	6,294.5	Cost of Energy port	al
Undecane	44.194	32.70	19,003	6,908.0	electricity by source	
Dodecane	44.147	33.11	18,983	7,519.6	 Electrical 	
	Isopara	ffins			efficiency	
Isobutane	45.613	_	19,614	2,651.0	• Energy	
Isopentane	45.241	27.87	19,454	3,264.1	fuel	
2-Methylpentane	44.682	29.18	19,213	3,850.7	• Energy	
2,3-Dimethylbutane	44.659	29.56	19,203	3,848.7	efficiency	
2,3-Dimethylpentane	44.496	30.92	19,133	4,458.5	 Energy 	
2,2,4-Trimethylpentane	44.310	30.49	19,053	5,061.5	density	
	Naphth	enes			• Energy	
Cyclopentane	44.636	33.52	19,193	3,129.0	coal	
Methylcyclopentane	44.636?	33.43?	19,193?	3,756.6?	Exothermic	
Cyclohexane	43.450	33.85	18,684	3,656.8	reaction	
Methylcyclohexane	43.380	33.40	18,653	4,259.5	merit	
	Monool	efins			■ Fire	
Ethylene	47.195	_	_	_	• Food	
Propylene	45.799	_	_	_	energy	
1-Butene	45.334	_	_	_	 Internal energy 	
<i>cis</i> -2-Butene	45.194	_	_	_	■ ISO 15971	
trans-2-Butene	45.124	_	_	_	 Mechanical 	
Isobutene	45.055	_	_		efficiency	
1-Pentene	45.031	_	_	_	Inermal efficiency	
2-Methyl-1-pentene	44.799	_	_	_]	

Fuel	MJ/kg	MJ/L	BTU/lb	kJ/mol	Wobbe index: heat density		
	Alkar	_					
1-Hexene	44.426	References					
	Diolef	1. "Effect of structural conduction and					
1,3-Butadiene	44.613	_	_	_	heat loss on combustion in micro-		
Isoprene	44.078	_		_	channels" (https://www.tandfonline.		
Nitrous derived				277332). Taylor & Francis Online.			
Nitromethane	10.513	_	_	_	2. Kharasch, M.S. (February 1929).		
Nitropropane	20.693	_	_	_	"Heats of combustion of organic		
	Acetyle	enes			8%2Fires.002.007). <i>Bureau of</i>		
Acetylene	48.241	_	_	_	Standards Journal of Research. 2		
Methylacetylene	46.194			_	(2): 359. doi:10.6028/jres.002.007 (https://doi.org/10.6028%2Eires.00		
1-Butyne	45.590				2.007).		
1-Pentyne	45.217	_		_	3. "Theoretical Analysis of Waste Heat		
	Aroma	tics			Recovery from an Internal		
Benzene	40.170	_	_	_	Vehicle" (https://www.istor.org/stabl		
Toluene	40.589				e/44687347). Jstor.		
<i>o</i> -Xylene	40.961				4. Zwolinski, Bruno J; Wilhoit, Randolf		
<i>m</i> -Xylene	40.961				Heats of Combustion" (https://web.a		
<i>p</i> -Xylene	40.798				rchive.org/web/20210806144519/htt		
Ethylbenzene	40.938	_		_	- ps://web.mit.edu/8.13/8.13c/reteren		
1,2,4-Trimethylbenzene	40.984			_	pdf) (PDF). In Dwight E., Gray;		
n-Propylbenzene	41.193		_	_	Billings, Bruce H. (eds.). American		
Cumene	41.217	_	_	_	McGraw-Hill. pp. 316–342.		
	Alcoh	ols			ISBN 978-0-07-001485-5. Archived		
Methanol	19.930	15.78	8,570	638.6	from the original (https://web.mit.ed		
Ethanol	26.70	22.77	12,412	1,230.1	handbook-section4I.pdf) (PDF) on		
1-Propanol	30.680	24.65	13,192	1,843.9	2021-08-06. Retrieved 2021-08-06.		
Isopropanol	30.447	23.93	13,092	1,829.9	5. Hosokai, Sou; Matsuoka, Koichi; Kuramoto, Koji: Suzuki, Yoshizo (1		
<i>n</i> -Butanol	33.075	26.79	14,222	2,501.6	November 2016). "Modification of		
Isobutanol	32.959	26.43	14,172	2,442.9	Dulong's formula to estimate		
<i>tert</i> -Butanol	32.587	25.45	14,012	2,415.3	solid fuels". <i>Fuel Processing</i>		
<i>n</i> -Pentanol	34.727	28.28	14,933	3,061.2	<i>Technology</i> . 152 : 399–405.		
Isoamyl alcohol	31.416?	35.64?	13,509?	2,769.3?	ttps://doi.org/10.1016%2Fi.fuproc.2		
	Ethe	016.06.040).					
Methoxymethane	28.703	_	12,342	1,322.3]		
Ethoxyethane	33.867	24.16	14,563	2,510.2]		

Fuel	MJ/kg	MJ/L	BTU/lb	kJ/mol			
Alkanes							
Propoxypropane	36.355	26.76	15,633	3,568.0			
Butoxybutane	37.798	28.88	16,253	4,922.4			
Aldehydes and ketones							
Formaldehyde	17.259	_	_	570.78 ^[9]			
Acetaldehyde	24.156	—	_	_			
Propionaldehyde	28.889	—	_	_			
Butyraldehyde	31.610	—	_	_			
Acetone	28.548	22.62	_	_			
Other species							
Carbon (graphite)	32.808	—	_	_			
Hydrogen	120.971	1.8	52,017	244			
Carbon monoxide	10.112	_	4,348	283.24			
Ammonia	18.646	_	8,018	317.56			
Sulfur (solid)	9.163	_	3,940	293.82			

- Air Quality Engineering, CE 218A, W. Nazaroff and R. Harley, University of California Berkeley, 2007
- 7. "The difference between LCV and HCV (or Lower and Higher Heating Value, or Net and Gross) is clearly understood by all energy engineers. There is no 'right' or 'wrong' definition. - Claverton Group" (http:// www.claverton-energy.com/the-diffe rence-between-lcv-and-hcv-or-lower -and-higher-heating-value-or-net-an d-gross-is-clearly-understood-by-allenergy-engineers-there-is-no-rightor-wrong-definition.html). www.claverton-energy.com.
- 8. Linstrom, Peter (2021). *NIST Chemistry WebBook*. NIST Standard Reference Database Number 69. NIST Office of Data and Informatics.
 - doi:10.18434/T4D303 (https://doi.or g/10.18434%2FT4D303).
- 9. <u>"Methanal" (http://webbook.nist.gov/</u> cgi/cbook.cgi?ID=C50000&Mask=1) . webbook.nist.gov.
- 10. "Key World Energy Statistics (2016)" (https://www.ourenergypolic y.org/wp-content/uploads/2016/09/K eyWorld2016.pdf) (PDF). *iea.org.*

Further reading

 Guibet, J.-C. (1997). Carburants et moteurs. Publication de l'Institut Français du Pétrole. ISBN 978-2-7108-0704-9.

External links

- NIST Chemistry WebBook (http://webbook.nist.gov/chemistry/)
- "Lower and Higher Heating Values of Gas, Liquid and Solid Fuels" (http://cta.ornl.gov/bedb/appen dix_a/Lower_and_Higher_Heating_Values_of_Gas_Liquid_and_Solid_Fuels.pdf) (PDF). Biomass Energy Data Book. U.S. Department of Energy. 2011.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Heat_of_combustion&oldid=1153485259"