7.3. Technologies for Hydrogen Production

Technologies for hydrogen (H_2) production fall into three main categories:

1. **Thermal Processes:** Some thermal processes use the energy in various feedstocks (natural gas, coal, biomass, etc.) to release the H_2 that is part of their molecular structure. Other thermal processes known as thermo-chemical processes use heat in combination with a closed chemical cycle to produce H_2 from feedstocks such as water.

In addition to gasification, the main thermal process technology which is available for production of H_2 is steam reformation of natural gas. It is a well established technology that produces about 95% of the H_2 produced in the United States. Steam reforming involves the reaction of natural gas and steam over a nickel based catalyst. This breaks the methane component of the natural gas into carbon monoxide (CO) and H_2 gas, similar to synthesis gas (syngas) produced via gasification. Then <u>water-gas shift</u> (WGS) is performed to increase the amount of H_2 in the product gas as much as possible.

- Electrolytic Processes: These processes use electricity to split water into its two chemical constituents, oxygen (O₂) and H₂, using an electrolyzer. The cost and efficiency of producing H₂via electrolytic processes is directly dependent on the cost and efficiency of the electricity used in the process.
- 3. **Photolytic Processes:** These processes use light energy to also split water into H_2 and O_2 . These processes are currently in the early stages of development and currently are not viable for large scale production.

Efficiency/Cost Comparison to Competing Technologies

Table 1 presents the cost and performance characteristics of various H_2 production pathways, as of 2004. Many of the technologies that are in the research and development (R&D) stage will require years of improvements before becoming a commercial reality.

Table 1: Efficiency/Cost Comparison to Competing Technologies ¹								
Process	Energy Required (kWh/Nm ³)		Status of	Efficiency	Costs Relative			
	Ideal	Practical	Tech.	[70]	to SMR			
Steam methane reforming (SMR)	0.78	2-2.5	mature	70-80	1			
Coal gasification (<u>GE</u> <u>Energy</u>)	1.01	8.6	mature	60	1.4-2.6			
Partial oxidation of coal			mature	55				
H ₂ S methane reforming	1.5		R&D	50	<1			
Landfill gas dry reformation			R&D	47-58	~1			
Partial oxidation of heavy oil	0.94	4.9	mature	70	1.8			
Naphtha reforming			mature					
Steam reforming of waste oil			R&D	75	<1			
Steam-iron process			R&D	46	1.9			
Chloralkali electrolysis			mature		by- product			
Grid electrolysis of water	3.54	4.9	R&D	27	3-10			
Solar & PV-electrolysis of water			R&D to mature	10	>3			
High-temp. electrolysis of water			R&D	48	2.2			
Thermochemical water splitting			early R&D	35-45	6			
Biomass gasification			R&D	45-50	2.0-2.4			
Photobiological			early R&D	<1				
Photolysis of water			early R&D	<10				

Photoelectrochemical decomp. of water		early R&D	
Photocatalytic decomp. of water		early R&D	

The cost of H_2 production depends heavily on the cost of fuel or electricity from which it is produced. As the market price for these inputs to the H_2 production system fluctuate, one given technology may become more attractive economically compared to others.

Coal-to-Hydrogen Process Description

The U.S. Department of Energy (DOE) has sponsored many design studies on the production of H_2 from coal, with or without the co-production of power.

Recent DOE studies presented the following four process design schemes as possible options for centralized-large-scale H_2 production from coal, and discussed their performance and efficiency:²

- Co-producing H₂ and power in today's coal-based <u>integrated</u> <u>gasification combined cycle (IGCC)</u> plants
- Co-producing H₂ and power in coal-based IGCC with carbon capture
- H₂ production from coal without power export
- Co-producing H₂ and power in future IGCC based on <u>advanced warm</u> <u>gas clean-up</u> and advanced membrane (combined shift and H₂ separation) technologies
- Hydrogen: Automotive Fuel of the Future, by FSEC's Ali T-Raissi and David Block, IEEE Power & Energy, Vol. 2, No. 6, page 43, Nov-Dec 2004.
 Hydrogen from Cool, D. Gray & G. Tomlinson, Mitratek Technical Paper (New
- 2. <u>Hydrogen from Coal</u>, D. Gray & G. Tomlinson, Mitretek Technical Paper (Nov 2001)

Hydrogen

- <u>Why Hydrogen</u>
- Hydrogen & Synthetic Natural Gas from Coal
- Technologies for Hydrogen Production
 - <u>Co-producing H₂ with Current IGCC Technology</u>
 - <u>Co-producing H₂ in IGCC with Carbon Sequestration</u>
 - Hydrogen Production from Coal without Power Export
 - IGCC/H₂ Co-production with WGCU and Advanced WGS Membrane
- <u>Technology for SNG Production</u>
- <u>SNG from Coal: Process & Commercialization</u>
- DOE Supported R&D for Production of Hydrogen

