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Abstract: Looking at new trends in global policies, electric vehicles (EVs) are expected to 
increasingly replace gasoline vehicles in the near future. For current electric vehicles, the motor 
current driving system and the braking control system are two independent issues with separate 
design. If a self-induced back-EMF voltage from the motor is a short circuit, then short-circuiting 
the motor will result in braking. The higher the speed of the motor, the stronger the braking effect. 
However, the effect is deficient quickly once the motor speed drops quickly. Traditional kinetic 
brake (i.e., in the short circuit is replaced by a resistor) and dynamic brake (the short circuit brake is 
replaced by a capacitor) rely on the back EMF alone to generate braking toque. The braking torque 
generated is usually not enough to effectively stop a rotating motor in a short period of time. In this 
research task, an integrated driving and braking control system is considered for EVs with an active 
regenerative braking control system where back electromagnetic field (EMF), controlled by the 
pulse-width modulation (PWM) technique, is used to charge a pump capacitor. The capacitor is 
used as an extra energy source cascaded with the battery as a charge pump. This is used to boost 
braking torque to stop the rotating motor in an efficient way while braking. Experiments are 
conducted to verify the proposed design. Compared to the traditional kinetic brake and dynamic 
brake, the proposed active regenerative control system shows better braking performance in terms 
of stopping time and stopping distance. 
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1. Introduction 

Owing to the technological advances, the Earth’s environment becomes more and more serious. 
To reduce gasoline-vehicle-induced air pollution, it has been a trend for many countries to advocate 
the development of electric vehicles (EVs) with a strong endeavor. In the past, the development of 
electric vehicles was limited by motor driving technology and insufficient battery power so that such 
vehicles could not compete against gasoline ones. In recent years, the significant progress of the 
development of electric vehicles has been made, but most engineers focused only on how to increase 
energy efficiency or to improve the performance of motor propulsion. Comparatively few research 
tasks have been dedicated to improve braking operations by the driving motors. Drum brake, disc 
brake, and antilock braking system (ABS) are commonly adopted in the conventional gasoline-
powered vehicles or electric vehicles. During the downhill road sections, the genre of gasoline-
powered vehicles has inherent engine braking, which generates retarding forces in the engine to slow 
down a running vehicle, but this is definitely not for electric vehicles. While lacking such advantage, 
electric vehicles could still use magnetic field produced by the field coils of the motor, i.e., the back 
EMF to generate an analogous effect [1,2]. 
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Most studies revealed in the published literature focus mostly on renewable technology for 
electric vehicles. In References [3–7], the researchers focused on the development of the wide variety 
of designs for electric braking control. Among these studies, the paper in Reference [7] presented an 
electromagnetic brake design with the regenerative braking, which directs the back EMF of the motor 
to the battery for energy recharge. The way can be used to prolong the driving distance of EVs. The 
paper in Reference [8] studies the braking sense and its consistency in the electro-hydraulic composite 
braking system. Aimed at this, the researchers mainly design the braking sense consistency controller 
that can make up the difference of braking force while keeping the braking force change rate 
unchanged. In Reference [9], this study proposes a new braking pressure coordinated control system 
with an electro-hydraulic braking function. It realizes efficient energy recovery and ensures braking 
safety, while considering the disadvantages of control complexity and functional limitations of 
existing electro-hydraulic system. In Reference [10], an electric-hydraulic hybrid drivetrain 
incorporating a set of hydraulic systems is proposed for application in a pure electric vehicle. This 
system aims at absorbing high power braking energy as well as suppressing the impact of current on 
the battery. The paper in Reference [11] has suggested a model-free Q-learning approach to nonlinear 
state-feedback anti-lock braking system (ABS) slip control. The design is a model-free tire slip control 
for a fast and highly nonlinear ABS. In Reference [12], the researchers design an adaptive controller 
to solve nonlinear dynamics and parametric uncertainty of the control of an ABS. 

While many research efforts have paid attention to tackle a similar problem, most researchers 
focused on the use of regenerative energy to recharge battery while obtaining limited effect of wheel 
brake. From practical on-road experiments, we have found that the effect is not significant or even 
vanishes quickly once the motor speed drops. Traditional kinetic brake (i.e., short-circuiting the 
motor is replaced by a resistor in the current conduction loop) and dynamic brake (as kinetic brake 
but the resistor replaces by a capacitor) relying on the back EMF alone is usually not enough to 
completely halt a rotating motor in the short period of time. Our research task proposes an improved 
method to tackle the problem. 

The paper in Reference [13] proposed an identification technique of the parameters that are 
needed to minimize power consumption of a city-bus equipped with permanent magnet 
synchronous motors (PMSMs). The MSMs have no torque ripple at commutation, possess higher 
torque (comparing to brushless DC motor (BLDCM)), and have the potential for extensive use in the 
future [14,15]. On the basis of this advantage, we select PMSMs as the test object in this research. The 
paper in Reference [16] proposed a regenerative braking system that considers the effects of single 
switch and double switch that can recycle a relatively large amount of energy to extend the life cycle 
of electric vehicles. In References [1,2], short circuit brake has been explored; the studies proposed 
that the under-bridge short circuit braking causes a complete consumption of the back EMF in the 
motor coils and enables dynamic braking simultaneously. Our proposed design here is different from 
the conventional approaches that apply only the back EMF to generate braking force. Our proposed 
system resolves the problem by introducing an energy boost mechanism to reduce the performance 
dropping rate in the conventional regenerative braking design. In addition, the motor driver and 
brake driver share the same inverter that meant low cost. Theoretical analysis is developed in this 
paper and real-world experiments are conducted to verify the proposed design, in comparison to the 
traditional approaches. 

2. Active Braking Control 

The proposed braking control system considers back EMF regenerated by a free running motor 
and uses it to generate braking torque in an efficient way. The design stores the back EMF in a pump 
capacitor, which is connected to the battery in a series-parallel configuration to instantaneously 
increase braking force and extend the acting time duration. The back EMF controlled by pulse-width 
modulation (PWM) technology is fed back to the capacitor as an extra energy source cascaded with 
the vehicle battery to provide excessive braking torque to stop the rotating motor. 

To explain, consider Figure 1, which reveals the Ampère’s circuital law for a DC motor during 
driving or braking with F denoting the force generated by the motor. When the electric vehicle is 
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operating in the driving mode, force direction of the rotor’s magnetic field is clockwise. Force direction 
of the rotor’s magnetic field becomes counter-clockwise when the electric vehicle works in the 
braking mode. 
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S
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Figure 1. Ampère’s circuital law for motor driving and braking. 

The proposed system includes an active regenerative braking controller in the conventional 
architecture, as shown in Figure 2. It involves two metal-oxide-semiconductor field-effect Transistor 
(MOSFET) switches (ܵ and ଼ܵ), which are switched to charge the pump capacitor and connected the 
capacitor to the battery in a series-parallel configuration. The capacitor serves as a charge pump that 
stores the back EMF for energetic charge storage and the braking resistor consumes energy when the 
capacitor is being charged. 

Activation of the system is controlled by braking commands. When the circuit is in operation, 
PWM1 ( ଵܵ), PWM3 (ܵଷ), and PWM5 (ܵହ) only activate as a buffer. They are disabled to lead the braking 
current that goes through the body diode of MOSFET. Referring to Figure 3, the outputs of ଵܵ, ܵଶ	and	ܵଷ are combined and transmitted to the photocoupler (TLP) to control ଼ܵ. Furthermore, the 
signal is sent to an inverter. The inverter reverses the signal, if the input is one, the output becomes 
zero. The output of the TLP is used to control ܵ. 
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Figure 2. Active regenerative braking control scheme. 
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Figure 3. Control of MOSFET switches ܵ and ଼ܵ. 
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For the braking mode, the relay that appeared in Figure 2 is inactivated and the driving current 
loop is cut off. The microcontroller unit (MCU) turns on the MOSFET ܵ and turns off ଼ܵ to let the 
back EMF generate the current i. Referring to Figure 2, the back EMF is rectified to the dc voltage via 
the body diode of the MOSFET ܵ where, in the figure, the pump capacitor’s voltage is ܸ, the battery 
voltage is ܸ, the voltage across ܵ and ଼ܵ are, respectively, ௦ܸ and ௦଼ܸ, the braking resistor is R, 
the motor internal resistance is ܴ , the motor internal inductance is ܮ , and the motor internal 
capacitance is ܥ. 

The controller shown in Figure 3 controls switching status of ܵ  and ଼ܵ . The controller is 
activated and deactivated by the braking signal. When the controller works PWM1 ( ଵܵ), PWM3 (ܵଷ), 
and PWM5 (ܵହ ) are combined to control a logical buffer. The outputs of the logical buffer are 
combined and used to isolate the breaking signal from other signals. It is transmitted to a TLP to 
control ଼ܵ. Furthermore, the signal is used to activate a logical inverter and then connected to a TLP 
to control ܵ. 

To create an effective way to brake the PMSM in the shortest time, we first adopt the Hall table 
of the switching sequence of six MOSFETs for controlling the reverse magnetic field, see Table 1. 

Table 1. Hall table for controlling reverse magnetic field. 

Status Sector Hall C Hall B Hall A 1S  3S  5S  2S  4S  6S  

1 5(VI) 1 0 0 0 PWM 0 0 0 1 
2 4(V) 1 1 0 PWM 0 0 0 0 1 
3 3(IV) 0 1 0 PWM 0 0 0 1 0 
4 0(I) 1 0 1 0 PWM 0 1 0 0 
5 1(II) 0 0 1 0 0 PWM 1 0 0 
6 2(III) 0 1 1 0 0 PWM 0 1 0 

We only focus on the braking operation in this research. Consider the first step of braking 
operation, the relay is cut off by the braking command, ଼ܵ is disabled, and ܵ is enabled and the 
back EMF generated by the motor induces braking current is illustrated, as in Figure 4. The back EMF 
proceeds to charge the pump capacitor C via the way indicated in the figure. Related variables and 
parameters are listed in Table 2. 

Table 2. Nomenclature. 

Notation Description 

mV  voltage of the back EMF 

baV  battery voltage 

cV  voltage of the pump capacitor 

siV  drain-to-source voltage of the MOSFET iS  
i  current of circuit loop 
R  braking resistor 

siR  body resistance of the MOSFET iS  
C  pump capacitor 
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Figure 4. Capacitor charging loop. 

From Figure 4, it is easy to have 
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where Vୡ(t) = ଵୡ  idt	and Vୱ(t) = i(t)Rୱ	with Rୱ  being the drain-to-source on-state resistance 
(body resistance) of the MOSFET S and ܸ(ݐ) = ܸ(ݐ߱)݊݅ݏ where ω is the angular speed of the 
motor. The total impedance within the current loop is given by 
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From which we have the current 
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We use PWM commands to switch on/off status of ܵ and ଼ܵ to charge the pump capacitor 
from the back EMF ܸ. When ܵ is turned off and ଼ܵ is turned on, the pump capacitor is cascaded 
with the battery, shown as in Figure 5. 
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Figure 5. Current loop when the battery in series with the capacitor. 

Under the situation, the battery voltage ܸ will be in the series with the capacitor’s voltage	 ܸ. 
This boosts the main voltage to be ܸ + ܸ . Referring to Figure 5, the braking current is the 
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combination of the current generated by the DC voltage source ܸ(ݐ), as well as the AC voltage source ܸ(ݐ) = ܸ(ݐ߱)݊݅ݏ with ܸ being the amplitude of the back EMF.  
We have the voltage loop equations corresponding to Status 2 in Table 1 given by 

8 6 1( ) ( ) ( ) ( ) ( ) 0ba s c s s mV t t tV tV tV V V+ − − −− =  (4) 

where ௦଼ܸ = ܴ݅௦଼, ௦ܸ = ܴ݅௦, and ௦ܸଵ = ܴ݅௦ଵ. Analysis of the loop current ݅(ݐ) should consider the 
combination of two voltage sources.  

Consider first the AC voltage source ܸ(ݐ)  generated by the back EMF. Clearly, the total 
impedance within the current loop is given by 
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Therefore, the braking current contributed by the back EMF is given by 
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Next, for DC voltage source, we have the node equation given by 
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Adding Equation (5) and Equation (7) yields the total braking current given by 
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As ܴ߱ܥ௦ is ignorable, from Equation (7) and the second term in Equation (8), it is seen that the 
braking current is proportional to the rotational speed of the motor, which is closely related to the 
value of ߱. Therefore, the electromagnetic braking effect would be decreasing with vehicle speed. 
The effect vanishes very fast when the vehicle is going to stop. This explains why the traditional 
design; simply with a braking resistance, does not work satisfactorily when the vehicle speed drops 
with time. Now consider the first term of Equation (8), because on-state resistance of the MOSFESTs ܴ௦ are constant, it is seen that the braking effect contributed by both of the battery and back EMF 
would be longer when a large pump capacitor is used and the instantaneous braking current would 
be dominated by ܸ + ܸ(0). However, a large capacitor may not be fully charged to the supply 
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voltage level if the duty cycle of the PWM command is not relatively large. Therefore, there is a trade-
off for selection of an appropriate pump capacitor.  

With the current ݅(ݐ), obtained from Equation (9), the charging equation of the pump capacitor 
can be obtained by the following equation where the sampling time period is T, the duty cycle is D 
and the operating time is t: 
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The discharging equation of the capacitor is given by 
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Therefore, the equation describing the pump capacitor’s voltage over a sampling cycle of the 
PWM command is given by  
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When ଼ܵ is switched on, ଵܵ~ܵ are controlled, respectively, according to the reverse operating 
sequence of MOSFETs. By superposition, the back EMF used to generate braking current will be 
increased by the boosted voltage. 

( ) ( )m ba cV t V V t= +  (12) 

This equation describes the total voltage used to reversely drive the motor within a sampling 
cycle and hence against wheel rotation for the largest stopping power. As the effect for wheel 
deceleration is created by adding extra energy rather than dissipating the back-EMF voltage via 
passive component, such as those of kinetic brake or dynamic brake, one could thus expect better 
braking performance to result. 

Figure 6 illustrates the schematic diagram of the whole system where the controller/driver is 
implemented by a motor control 16-bit digital signal controller dsPIC30F3011 (MCU). Rotor position 
is detected by Hall sensors. The three-phase inverter is incorporated with the active regenerative 
braking control part, as shown in Figure 2. Brake signal is detected by a limit switch attached with 
the brake handle lever. 
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Figure 6. Schematic diagram of the whole system. 



Actuators 2018, 7, 84 8 of 14 

 

The MCU detects throttle and brake commands to determine which operating mode will be and 
count Hall signals to calculate the wheel speed. For driving, the MCU calculates the PID control 
command by comparing the throttle command with the wheel speed signal. This is used to alter the 
duty cycle of the pulse width modulated driving command of the six MOSFETs ଵܵ~ܵ. While braking, 
the MCU sends command to cut off the current driving loop. The battery connects the pump 
capacitor, which is charged by the back EMF. The stacked voltage is then used to brake the motor in 
an active way with the fixed duty cycle of the PWM driving command for the switching sequence of 
six MOSFETs, as depicted in Table 1. 

3. Experimental Results Magnet 

For the simulation purposes, considering the duty cycle D being 75%, the sampling period T is 
0.2 msec, the resistance is 20 Ω, the motor internal resistance ܴ is 5.6 Ω, the motor inductance ܮ 
is is 22 mH, ܴ௦ = 0 for all i. We simulate charge and discharge statuses of the capacitor during 
braking. As mentioned, the MOSFETs ܵ and ଼ܵ are controlled by the PWM command of 5000 Hz 
to charge and discharge the capacitor. Consider the back EMF to be 50 V. The PWM command uses 
75% duty cycle for capacitor charging, and 25% duty cycle for discharging. Figures 7 and 8 illustrate 
the simulation results of the capacitor’s voltage, where the capacitance is 20 μF and 200 μF, 
respectively, and the resistance of R is 20 Ω. Note that the peak voltage of the case of capacitance of 
200 μF is lower than that of 20 μF because the current setting of duty cycle of the PWM command is 
not enough for the larger capacitor fully charged to the supply voltage. 

 
Figure 7. Simulating charge and discharge voltage of 20 μF capacitor. 

 
Figure 8. Simulating charge and discharge voltage of 200 μF capacitor. 

Experimental Verification 

The electric bicycle was tested on the TACX I-Genius T2000 bike simulator [17]. The simulator 
is designed as a virtual reality experimental platform for bike trainers. The interactive trainer is 
equipped the Tacx Trainer software where users can choose from various animated terrains for 
mountain bike, race, and track with virtual 3D riders. Several data are provided like bike speed, time, 
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road slope, distance, and power. What we need in this research work are just speed, time, slope, and 
distance. We perform hardware-in-the-loop (HIL) experiments by including all hardware, software, 
and the simulator with respect to two kinds of road condition including smooth flat road and smooth 
downhill road of a −5% slope. The arrangement helps us to understand the behavior of the proposed 
braking control design in an efficient way. In which, the bike simulator is equipped with an active 
resistance unit driven by a DC motor to generate the effect of riding uphill or downhill. During a hill 
climbing, the resistance at the rear wheel increases accordingly. While going downhill, the speed of 
the active resistance unit will be increased to emulate the riding downhill scenarios. The testing 
environment can be found from Figure 9. We verify braking performance of the active regenerative 
braking control system by implementing it in a customized electric bicycle. The bicycle has a drum 
direct-drive motor with 20 poles and three 120° Hall sensors installed in the rear wheel. The friction 
brake has been removed from the rear wheel. Driving and braking processes are controlled solely by 
electricity. 

 

 
Figure 9. Experimental platform of electric bicycle. 

An active regenerative braking control system has been equipped with a pump capacitor of 200 
μF, as depicted in Section 2. Charge or discharge of the capacitor depends on the way of activation. 
Figure 10 illustrates the capacitor’s voltage when charging and discharging. RMS value of the 
capacitor’s voltage is around 75 V. The battery is of 48 V. The extra voltage is stacked to the battery 
voltage to boost the braking current in an active way so as to enhance braking torque. 
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Figure 10. Response of capacitor voltage. 
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For high-speed inertial rotation of the motor, it generates larger back EMF. While adding the 
back EMF to the fully charged capacitor, the instantaneous voltage is boosted to the peak value of 
123 V, without the need of external power, as shown in Figure 11. 
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Figure 11. Boosted voltage when the battery is in series with the pump capacitor. 

Figure 12 shows braking current of the active regenerative braking control system, where the 
peak current reaches 40 A, which significantly increases while compared with the non-active 
regenerative braking methods. 
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Figure 12. Braking current of the active regenerative braking control system. 

We used the simulator to measure the bicycle speed. The simulation results were verified by 
conducting the test on the smooth flat road surface. The total traveling distance in all experiments 
was set to be 100 m. The bicycle was speed up to 25 km/h and last for 20 s. Then, the braking command 
was executed without the aid of the mechanical brake. The stopping distance was used to identify 
the level of effectiveness of the braking system. We endeavored to maintain the sufficiently consistent 
wheel rotational speed for fair comparisons. Electromagnetic braking was activated after the bicycle 
speed reaches 25 km/h. 

A 60 kg payload to emulate the rider with the same weight to conduct the test on the smooth flat 
road. We verified braking performance (in stopping distance) of different operational modes, namely, 
kinetic brake with the virtual load of 1 Ω , dynamic brake with the virtual load of 20 μF, and an active 
regenerative brake. Once the bicycle speed approaches 25 km/h and lasts for 20 s, the selected braking 
mode was applied.  

For the kinetic braking mode, the stopping distance was 21.8 m shown as in Figure 13. 
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Figure 13. HIL test result of rider of 60 kg, flat road with kinetic brake. 

For the dynamic braking mode, the stopping distance was measured as 13.3 m (in Figure 14). 
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Figure 14. HIL test result of rider of 60 kg, flat road with dynamic brake. 

The stopping distance of the active regenerative braking system was 10.3 m (in Figure 15). It is 
seen that the stopping distance of the active regenerative braking system is shorter than that of the 
dynamic brake by 3 m. Obviously, the active regenerative braking control system shows superior 
performance than other designs. 
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Figure 15. HIL test result of rider of 60 kg, flat road with active regenerative brake. 

To verify effectiveness of the proposed design, various scenarios were considered. In each of the 
scenario, specific changes of the rider weight and road condition were set as a contingency to the 
system. Two kinds of road condition including smooth flat road and smooth downhill road of a −5% 
slope are considered. The results of HIL test, represented in terms of the key index, e.g. the stopping 
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distance, are summarized in Table 3. Under the current settings, the braking performance of the active 
regenerative brake surpasses the other two approaches by 30% to 50%. 

Table 3. Summary of HIL test results. 

Initial Speed 
(km/h) 

Weight 
(kg) Road Conditions Brake Method Stopping Distance 

(m) 

25 

60 smooth flat Kinetic brake 21.8 
60 smooth flat Dynamic brake 13.3 
60 smooth flat Active regenerative brake 10.3 
80 smooth flat Kinetic brake 26.8 
80 smooth flat Dynamic brake 19.2 
80 smooth flat Active regenerative brake 17.5 

30  

60 smooth downhill of −5% slope Kinetic brake 23.7 
60 smooth downhill of −5% slope Dynamic brake 15.9 
60 smooth downhill of −5% slope Active regenerative brake 12.3 
80 smooth downhill of −5% slope Kinetic brake 28.3 
80 smooth downhill of −5% slope Dynamic brake 21.4 
80 smooth downhill of −5% slope Active regenerative brake 19.5 

Video demonstration of the real-world experiments on the smooth road surface has been 
uploaded to YouTube. Please visit the website in Reference [18] for braking performance 
demonstration. 

4. Discussions 

The experimental results listed here for a 60 kg rider revealed that, compared with other braking 
system designs, the proposed active regenerative braking control system presents superior 
performance in terms of the stopping distance with its values reduced up to 22%. For the smooth flat 
road with a rider of 80 kg in weight, the proposed design exhibits superior performance with the 
stopping reduced by 10%. As for the smooth downhill road with the slope 5% and the rider of 60 kg 
weight, the proposed braking control system reduces the stopping distance up to 23%. The same test 
scenario for the rider of 80 kg show that the stopping distance was reduced by 9%. 

Theoretical analysis and experimental results reveal that the stopping distance was considerably 
reduced by the application of a virtual load with lower resistance or even zero Ω. However, this may 
induce the risk of overcurrent leading to excessive generation of heat and bring up the risk of damage 
to MOSFETs. Therefore, there is a compromise in selecting an appropriate virtual load in the braking 
current loop. 

In addition, our design is mainly to provide an assistant to the mechanical brake, especially 
when the bike is riding downhill (rather than to completely replace it). As the proposed design can easily 
tune the strength of braking force by adjusting duty cycle of the pulse-width modulated command, it can 
be used to generate the effect of engine brake like those of the gas-powered vehicles for safety concern. 

5. Conclusions 

This research task proposes a novel active regenerative braking control design. The design has 
been implemented, in both hardware and firmware, for real-world experiments. In the presented 
design, the back EMF is charged into a pump capacitor to boost the energy for braking torque 
enhancement. This is used to generate larger braking current and pursue stronger braking torque. 
The proposed system has been successfully implemented in the electric bicycle to demonstrate its 
effectives, while compared with the previous approaches, which were simply based on the use of the 
self-induced, back-EMF voltage from the motor. Durability testing has also been conducted on the 
bike simulator to test the limit of the system capability against large braking current under various 
load conditions over time. 
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As for the future works, a sensor-less electromagnetic braking control system based on the field-
oriented control (FOC) to integrate the driving and the braking units into a unified controller is 
currently under development, which allows one to properly size motors and drives, lowering cost 
and resulting in a more efficient system overall. In addition, the development of anti-lock braking 
system (ABS); based on the current braking design scheme; is worthy of further study.  
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