
Equipartition theorem
In  classical statistical  mechanics,  the  equipartition
theorem  relates  the  temperature  of  a  system  to  its
average  energies.  The  equipartition  theorem  is  also
known as the law of equipartition,  equipartition
of energy, or simply equipartition. The original idea
of  equipartition  was  that,  in  thermal  equilibrium,
energy is shared equally among all of its various forms;
for example,  the average kinetic energy per degree  of
freedom in translational motion of  a  molecule  should
equal that in rotational motion.

The  equipartition  theorem  makes  quantitative
predictions.  Like the virial  theorem,  it  gives  the  total
average kinetic and potential energies for a system at a
given  temperature,  from  which  the  system's  heat
capacity can be computed. However, equipartition also
gives the average values of individual components of the
energy, such as the kinetic energy of a particular particle
or the potential energy of a single spring. For example,
it predicts that every atom in a monatomic ideal gas has
an  average  kinetic  energy  of  (3/2)kBT  in  thermal
equilibrium, where kB is the Boltzmann constant and T
is  the  (thermodynamic)  temperature.  More  generally,
equipartition can be applied to any classical system in
thermal equilibrium, no matter how complicated. It can
be used to derive the ideal  gas law, and the Dulong–
Petit law for the specific heat capacities of solids. The equipartition theorem can also be
used to predict the properties of stars, even white dwarfs and neutron stars, since it holds
even when relativistic effects are considered.

Although the equipartition theorem makes accurate predictions in certain conditions, it is
inaccurate when quantum effects are significant, such as at low temperatures. When the
thermal energy kBT is smaller than the quantum energy spacing in a particular degree of
freedom, the average energy and heat capacity of this degree of freedom are less than the
values predicted by equipartition. Such a degree of freedom is said to be "frozen out" when
the thermal energy is much smaller than this spacing. For example, the heat capacity of a
solid decreases at low temperatures as various types of motion become frozen out, rather
than remaining constant as predicted by equipartition. Such decreases in heat capacity were
among the first signs to physicists of the 19th century that classical physics was incorrect

Thermal motion of an α-helical
peptide. The jittery motion is random
and complex, and the energy of any
particular atom can fluctuate wildly.
Nevertheless, the equipartition
theorem allows the average kinetic
energy of each atom to be
computed, as well as the average
potential energies of many
vibrational modes. The grey, red
and blue spheres represent atoms
of carbon, oxygen and nitrogen,
respectively; the smaller white
spheres represent atoms of
hydrogen.
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and that  a  new,  more subtle,  scientific  model  was  required.  Along with other  evidence,
equipartition's  failure  to  model  black-body  radiation—also  known  as  the  ultraviolet
catastrophe—led Max Planck to suggest that energy in the oscillators in an object, which
emit  light,  were  quantized,  a  revolutionary  hypothesis  that  spurred  the  development  of
quantum mechanics and quantum field theory.
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The  name
"equipartition"  means
"equal  division,"  as
derived  from  the  Latin
equi  from  the
antecedent,  æquus
("equal  or  even"),  and
partition from the noun,
partitio  ("division,
portion").[1][2]  The
original  concept  of
equipartition  was  that
the  total  kinetic  energy
of  a  system  is  shared
equally  among all  of  its
independent  parts,  on
the  average,  once  the
system  has  reached
thermal  equilibrium.
Equipartition also makes
quantitative  predictions
for  these  energies.  For
example,  it  predicts  that  every  atom  of  an  inert  noble  gas,  in  thermal  equilibrium  at
temperature T,  has an average translational  kinetic  energy of  (3/2)kBT,  where kB is  the
Boltzmann constant. As a consequence, since kinetic energy is equal to 1/2(mass)(velocity)2,
the heavier atoms of xenon have a lower average speed than do the lighter atoms of helium
at  the  same  temperature.  Figure  2  shows  the  Maxwell–Boltzmann  distribution  for  the
speeds of the atoms in four noble gases.

In this example, the key point is that the kinetic energy is quadratic in the velocity. The
equipartition theorem shows that in thermal equilibrium, any degree of freedom (such as a
component of the position or velocity of a particle) which appears only quadratically in the
energy has an average energy of 1⁄2kBT and therefore contributes 1⁄2kB to the system's heat
capacity. This has many applications.

The (Newtonian) kinetic energy of a particle of mass m, velocity v is given by

Basic concept and simple examples

Figure 2. Probability density functions of the molecular speed for four
noble gases at a temperature of 298.15 K (25 °C). The four gases are
helium (4He), neon (20Ne), argon (40Ar) and xenon (132Xe); the
superscripts indicate their mass numbers. These probability density
functions have dimensions of probability times inverse speed; since
probability is dimensionless, they can be expressed in units of seconds
per meter.

Translational energy and ideal gases
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where vx,  vy  and vz  are the Cartesian components of the velocity v.  Here, H  is short for
Hamiltonian,  and  used  henceforth  as  a  symbol  for  energy  because  the  Hamiltonian
formalism plays a central role in the most general form of the equipartition theorem.

Since the kinetic energy is quadratic in the components of the velocity,  by equipartition
these three components  each contribute 1⁄2kBT  to  the  average  kinetic  energy  in  thermal
equilibrium. Thus the average kinetic energy of the particle is (3/2)kBT, as in the example of
noble gases above.

More generally, in an ideal gas, the total energy consists purely of (translational) kinetic
energy:  by  assumption,  the  particles  have  no  internal  degrees  of  freedom  and  move
independently of one another. Equipartition therefore predicts that the average total energy
of an ideal gas of N particles is (3/2) N kB T.

It follows that the heat capacity of the gas is (3/2) N kB and hence, in particular, the heat
capacity of a mole of such gas particles is (3/2)NAkB = (3/2)R, where NA is the Avogadro
constant and R is the gas constant. Since R ≈ 2 cal/(mol·K), equipartition predicts that the
molar heat capacity of an ideal gas is roughly 3 cal/(mol·K). This prediction is confirmed by
experiment.[3]

The mean kinetic energy also allows the root mean square speed vrms of the gas particles to
be calculated:

where  M  = NAm  is  the  mass  of  a  mole  of  gas  particles.  This  result  is  useful  for  many
applications  such  as  Graham's  law  of  effusion,  which  provides  a  method  for  enriching
uranium.[4]

A similar example is provided by a rotating molecule with principal moments of inertia I1, I2
and I3. The rotational energy of such a molecule is given by

where ω1, ω2, and ω3 are the principal components of the angular velocity. By exactly the
same  reasoning  as  in  the  translational  case,  equipartition  implies  that  in  thermal
equilibrium  the  average  rotational  energy  of  each  particle  is  (3/2)kBT.  Similarly,  the
equipartition theorem allows the average (more precisely, the root mean square) angular
speed of the molecules to be calculated.[5]

The tumbling of  rigid molecules—that  is,  the random rotations of  molecules  in solution

Rotational energy and molecular tumbling in solution
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—plays a key role in the relaxations observed by nuclear magnetic resonance, particularly
protein NMR and residual dipolar couplings.[6] Rotational diffusion can also be observed by
other biophysical probes such as fluorescence anisotropy, flow birefringence and dielectric
spectroscopy.[7]

Equipartition applies to potential energies as well as kinetic energies: important examples
include harmonic oscillators such as a spring, which has a quadratic potential energy

where  the  constant  a  describes  the  stiffness  of  the  spring  and  q  is  the  deviation  from
equilibrium. If such a one-dimensional system has mass m, then its kinetic energy Hkin is

where v and p = mv denote the velocity and momentum of the oscillator. Combining these
terms yields the total energy[8]

Equipartition  therefore  implies  that  in  thermal  equilibrium,  the  oscillator  has  average
energy

where the angular brackets  denote the average of the enclosed quantity,[9]

This result is valid for any type of harmonic oscillator, such as a pendulum,  a  vibrating
molecule  or  a  passive  electronic  oscillator.  Systems  of  such  oscillators  arise  in  many
situations; by equipartition, each such oscillator receives an average total energy kBT  and
hence contributes kB to the system's heat capacity. This can be used to derive the formula
for Johnson–Nyquist noise[10] and the Dulong–Petit law of solid heat capacities. The latter
application was particularly significant in the history of equipartition.

For more details on the molar specific heat capacities of solids, see Einstein
solid and Debye model.

An important application of the equipartition theorem is to the specific heat capacity of a

Potential energy and harmonic oscillators

Specific heat capacity of solids
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crystalline solid.  Each atom in such a solid
can oscillate in three independent directions,
so the solid can be viewed as a system of 3N
independent  simple  harmonic  oscillators,
where N denotes the number of atoms in the
lattice.  Since  each  harmonic  oscillator  has
average energy kBT, the average total energy
of the solid is 3NkBT, and its heat capacity is
3NkB.

By taking N to be the Avogadro constant NA,
and using the relation R = NAkB between the
gas constant R and the Boltzmann constant
kB,  this  provides  an  explanation  for  the
Dulong–Petit law of specific heat capacities
of solids, which stated that the specific heat
capacity (per unit mass) of a solid element is
inversely proportional to its atomic weight. A
modern  version  is  that  the  molar  heat

capacity of a solid is 3R ≈ 6 cal/(mol·K).

However, this law is inaccurate at lower temperatures, due to quantum effects; it is also
inconsistent with the experimentally  derived third law of  thermodynamics,  according  to
which the molar heat capacity of any substance must go to zero as the temperature goes to
absolute zero.[10] A more accurate theory, incorporating quantum effects, was developed by
Albert Einstein (1907) and Peter Debye (1911).[11]

Many other physical systems can be modeled as sets of coupled oscillators. The motions of
such oscillators  can be decomposed into normal  modes,  like the vibrational  modes of  a
piano string or the resonances of an organ pipe.  On the other hand, equipartition often
breaks down for such systems, because there is no exchange of energy between the normal
modes.  In  an  extreme  situation,  the  modes  are  independent  and  so  their  energies  are
independently conserved. This shows that some sort of mixing of energies, formally called
ergodicity, is important for the law of equipartition to hold.

Potential  energies  are  not  always  quadratic  in  the  position.  However,  the  equipartition
theorem also shows that if a degree of freedom x contributes only a multiple of xs (for a fixed
real number s) to the energy, then in thermal equilibrium the average energy of that part is
kBT/s.

There  is  a  simple  application  of  this  extension  to  the  sedimentation  of  particles  under
gravity.[12]  For  example,  the  haze  sometimes  seen  in  beer  can  be  caused  by  clumps  of

Figure 3. Atoms in a crystal can vibrate about
their equilibrium positions in the lattice. Such
vibrations account largely for the heat capacity of
crystalline dielectrics; with metals, electrons also
contribute to the heat capacity.

Sedimentation of particles
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proteins that scatter light.[13] Over time, these clumps settle downwards under the influence
of gravity, causing more haze near the bottom of a bottle than near its top. However, in a
process working in the opposite direction, the particles also diffuse back up towards the top
of the bottle. Once equilibrium has been reached, the equipartition theorem may be used to
determine the average position of a particular clump of buoyant mass mb. For an infinitely
tall bottle of beer, the gravitational potential energy is given by

where z  is the height of the protein clump in the bottle and g  is the acceleration due to
gravity. Since s = 1, the average potential energy of a protein clump equals kBT. Hence, a
protein clump with a buoyant mass of 10 MDa (roughly the size of a virus) would produce a
haze  with  an  average  height  of  about  2   cm  at  equilibrium.  The  process  of  such
sedimentation to equilibrium is described by the Mason–Weaver equation.[14]

This article uses the non-SI unit of cal/(mol·K) for heat capacity, because it offers
greater accuracy for single digits.
For an approximate conversion to the corresponding SI unit of J/(mol·K), such
values should be multiplied by 4.2 J/cal.

The equipartition of kinetic energy was proposed initially in 1843, and more correctly in
1845, by John James Waterston.[15] In 1859, James Clerk Maxwell argued that the kinetic
heat energy of a gas is equally divided between linear and rotational energy.[16] In 1876,
Ludwig  Boltzmann expanded on this  principle  by  showing  that  the  average  energy  was
divided  equally  among  all  the  independent  components  of  motion  in  a  system.[17][18]

Boltzmann applied the equipartition theorem to provide a theoretical  explanation of the
Dulong–Petit law for the specific heat capacities of solids.

The history of the equipartition theorem is intertwined with that of specific heat capacity,
both of which were studied in the 19th century. In 1819, the French physicists Pierre Louis
Dulong  and  Alexis  Thérèse  Petit  discovered  that  the  specific  heat  capacities  of  solid
elements  at  room  temperature  were  inversely  proportional  to  the  atomic  weight  of  the
element.[20]  Their  law  was  used  for  many  years  as  a  technique  for  measuring  atomic
weights.[11] However, subsequent studies by James Dewar and Heinrich Friedrich Weber
showed  that  this  Dulong–Petit  law  holds  only  at  high  temperatures;[21]  at  lower
temperatures, or for exceptionally hard solids such as diamond, the specific heat capacity
was lower.[22]

Experimental observations of the specific heat capacities of gases also raised concerns about
the validity of the equipartition theorem. The theorem predicts that the molar heat capacity
of simple monatomic gases should be roughly 3 cal/(mol·K), whereas that of diatomic gases
should be roughly 7 cal/(mol·K). Experiments confirmed the former prediction,[3] but found

History

Equipartition theorem - Wikipedia 7 of 32

https://en.wikipedia.org/wiki/Equipartition_theorem



that  molar  heat
capacities  of  diatomic
gases  were  typically
about 5 cal/(mol·K),[23]

and  fell  to  about
3   cal/(mol·K)  at  very
low  temperatures.[24]

Maxwell  noted in 1875
that  the  disagreement
between  experiment
and  the  equipartition
theorem  was  much
worse  than  even  these
numbers  suggest;[25]

since  atoms  have
internal  parts,  heat
energy  should  go  into
the  motion  of  these
internal  parts,  making
the  predicted  specific
heats  of  monatomic
and  diatomic  gases
much  higher  than
3   cal/(mol·K)  and
7   cal/(mol·K),
respectively.

A  third  discrepancy
concerned  the  specific
heat of metals.[26] According to the classical Drude model, metallic electrons act as a nearly
ideal gas, and so they should contribute (3/2) NekB to the heat capacity by the equipartition
theorem,  where  Ne  is  the  number  of  electrons.  Experimentally,  however,  electrons
contribute little  to  the heat  capacity:  the molar heat  capacities  of  many conductors and
insulators are nearly the same.[26]

Several  explanations  of  equipartition's  failure  to  account  for  molar  heat  capacities  were
proposed. Boltzmann defended the derivation of his equipartition theorem as correct, but
suggested that gases might not be in thermal equilibrium because of their interactions with
the aether.[27] Lord Kelvin suggested that the derivation of the equipartition theorem must
be incorrect, since it disagreed with experiment, but was unable to show how.[28] In 1900
Lord Rayleigh instead put forward a more radical view that the equipartition theorem and
the experimental assumption of thermal equilibrium were both correct; to reconcile them,
he noted the need for a new principle that would provide an "escape from the destructive

Figure 4. Idealized plot of the molar specific heat of a diatomic gas against
temperature. It agrees with the value (7/2)R predicted by equipartition at
high temperatures (where R is the gas constant), but decreases to (5/2)R
and then (3/2)R at lower temperatures, as the vibrational and rotational
modes of motion are "frozen out". The failure of the equipartition theorem
led to a paradox that was only resolved by quantum mechanics. For most
molecules, the transitional temperature Trot is much less than room
temperature, whereas Tvib can be ten times larger or more. A typical
example is carbon monoxide, CO, for which Trot ≈ 2.8 K and Tvib ≈ 3103 K.
For molecules with very large or weakly bound atoms, Tvib can be close to
room temperature (about 300 K); for example, Tvib ≈ 308 K for iodine gas,
I2.[19]
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simplicity"  of  the  equipartition  theorem.[29] Albert  Einstein  provided  that  escape,  by
showing in 1906 that these anomalies in the specific  heat were due to quantum effects,
specifically the quantization of energy in the elastic modes of the solid.[30] Einstein used the
failure of equipartition to argue for the need of a new quantum theory of matter.[11] Nernst's
1910 measurements of specific heats at low temperatures[31]  supported Einstein's theory,
and led to the widespread acceptance of quantum theory among physicists.[32]

The most general form of the equipartition theorem states that under suitable assumptions
(discussed below), for a physical system with Hamiltonian energy function H and degrees of
freedom xn, the following equipartition formula holds in thermal equilibrium for all indices
m and n:[5][9][12]

Here δmn is the Kronecker delta, which is equal to one if m = n and is zero otherwise. The
averaging brackets  is assumed to be an ensemble average over phase space or, under
an assumption of ergodicity, a time average of a single system.

The general equipartition theorem holds in both the microcanonical ensemble,[9] when the
total energy of the system is constant, and also in the canonical ensemble,[5][33] when the
system is  coupled to a heat bath with which it  can exchange energy.  Derivations of  the
general formula are given later in the article.

The general formula is equivalent to the following two:

1. 

2. 

If a degree of freedom xn appears only as a quadratic term anxn2 in the Hamiltonian H, then
the first of these formulae implies that

which is twice the contribution that this degree of freedom makes to the average energy 
. Thus the equipartition theorem for systems with quadratic energies follows easily from the
general formula. A similar argument, with 2 replaced by s, applies to energies of the form
anxns.

General formulation of the equipartition theorem
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The  degrees  of  freedom  xn  are  coordinates  on  the  phase  space  of  the  system  and  are
therefore commonly subdivided into generalized position coordinates qk  and generalized
momentum coordinates pk, where pk is the conjugate momentum to qk. In this situation,
formula 1 means that for all k,

Using the equations of Hamiltonian mechanics,[8] these formulae may also be written

Similarly, one can show using formula 2 that

and

The  general  equipartition  theorem  is  an  extension  of  the  virial  theorem  (proposed  in
1870[34]), which states that

where t  denotes time.[8] Two key differences are that the virial theorem relates summed
rather  than  individual  averages  to  each  other,  and  it  does  not  connect  them  to  the
temperature T. Another difference is that traditional derivations of the virial theorem use
averages over time, whereas those of the equipartition theorem use averages over phase
space.

Ideal  gases  provide  an  important  application  of  the  equipartition  theorem.  As  well  as
providing the formula

Relation to the virial theorem

Applications

Ideal gas law
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for the average kinetic energy per particle, the equipartition theorem can be used to derive
the ideal gas law from classical mechanics.[5] If q = (qx, qy, qz) and p = (px, py, pz) denote
the position vector and momentum of a particle in the gas, and F is the net force on that
particle, then

where  the  first  equality  is  Newton's  second  law,  and  the  second  line  uses  Hamilton's
equations and the equipartition formula. Summing over a system of N particles yields

By Newton's third law and the ideal gas assumption, the net force on the system is the force
applied by the walls of their container, and this force is given by the pressure P of the gas.
Hence

where  dS  is  the  infinitesimal  area  element  along  the  walls  of  the  container.  Since  the
divergence of the position vector q is

the divergence theorem implies that

where dV is an infinitesimal volume within the container and V is the total volume of the
container.

Putting these equalities together yields

Equipartition theorem - Wikipedia 11 of 32

https://en.wikipedia.org/wiki/Equipartition_theorem



which immediately implies the ideal gas law
for N particles:

where n = N/NA is the number of moles of
gas  and  R   =  NAkB  is  the  gas  constant.
Although  equipartition  provides  a  simple
derivation  of  the  ideal-gas  law  and  the
internal  energy,  the  same  results  can  be
obtained by an alternative method using the
partition function.[35]

A  diatomic  gas  can  be  modelled  as  two
masses,  m1  and  m2,  joined  by  a  spring  of
stiffness a,  which is  called the rigid rotor-
harmonic oscillator approximation.[19]  The
classical energy of this system is

where p1 and p2 are the momenta of the two atoms, and q  is the deviation of the inter-
atomic  separation from its  equilibrium value.  Every  degree  of  freedom in the  energy  is
quadratic and, thus, should contribute 1⁄2kBT to the total average energy, and 1⁄2kB to the
heat capacity. Therefore, the heat capacity of a gas of N diatomic molecules is predicted to
be 7N·1⁄2kB:  the momenta p1  and p2  contribute  three  degrees  of  freedom each,  and the
extension q contributes the seventh. It follows that the heat capacity of a mole of diatomic
molecules with no other degrees of freedom should be (7/2)NAkB = (7/2)R and, thus, the
predicted molar heat capacity should be roughly 7 cal/(mol·K). However, the experimental
values for molar heat capacities of diatomic gases are typically about 5 cal/(mol·K)[23] and
fall  to  3   cal/(mol·K)  at  very  low  temperatures.[24]  This  disagreement  between  the
equipartition prediction and the experimental value of the molar heat capacity cannot be
explained by using a more complex model of the molecule, since adding more degrees of
freedom can only increase the predicted specific heat, not decrease it.[25] This discrepancy
was a key piece of evidence showing the need for a quantum theory of matter.

Figure 5. The kinetic energy of a particular
molecule can fluctuate wildly, but the equipartition
theorem allows its average energy to be
calculated at any temperature. Equipartition also
provides a derivation of the ideal gas law, an
equation that relates the pressure, volume and
temperature of the gas. (In this diagram five of the
molecules have been colored red to track their
motion; this coloration has no other significance.)

Diatomic gases
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Equipartition was used above to derive the
classical  ideal  gas  law  from  Newtonian
mechanics.  However,  relativistic  effects
become dominant in some systems, such as
white dwarfs and neutron stars,[9]  and  the
ideal  gas  equations  must  be  modified.  The
equipartition theorem provides a convenient
way to derive the corresponding laws for an
extreme  relativistic  ideal  gas.[5]  In  such
cases, the kinetic energy of a single particle
is given by the formula

Taking the derivative  of  H  with  respect  to
the  px  momentum  component  gives  the
formula

and similarly for the py and pz components. Adding the three components together gives

where  the  last  equality  follows  from  the  equipartition  formula.  Thus,  the  average  total
energy of an extreme relativistic gas is twice that of the non-relativistic case: for N particles,
it is 3 NkBT.

In  an  ideal  gas  the  particles  are  assumed  to  interact  only  through  collisions.  The
equipartition theorem may also be used to derive the energy and pressure of "non-ideal
gases" in which the particles also interact  with one another through conservative forces
whose potential U(r) depends only on the distance r between the particles.[5] This situation

Figure 6. A combined X-ray and optical image of
the Crab Nebula. At the heart of this nebula there
is a rapidly rotating neutron star which has about
one and a half times the mass of the Sun but is
only 25 km across. The equipartition theorem is
useful in predicting the properties of such neutron
stars.

Extreme relativistic ideal gases

Non-ideal gases
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can be described by first restricting attention to a single gas particle, and approximating the
rest of the gas by a spherically symmetric distribution. It is then customary to introduce a
radial distribution function g(r) such that the probability density of finding another particle
at a distance r from the given particle is equal to 4πr2ρg(r), where ρ = N/V is the mean
density of the gas.[36] It follows that the mean potential energy associated to the interaction
of the given particle with the rest of the gas is

The total mean potential energy of the gas is therefore , where N is the
number of particles in the gas, and the factor 1⁄2 is needed because summation over all the
particles counts each interaction twice. Adding kinetic and potential energies, then applying
equipartition, yields the energy equation

A similar argument,[5] can be used to derive the pressure equation

An anharmonic oscillator (in contrast to a simple harmonic oscillator) is one in which the
potential  energy  is  not  quadratic  in  the  extension  q  (the  generalized  position  which
measures  the  deviation  of  the  system  from  equilibrium).  Such  oscillators  provide  a
complementary  point  of  view on the  equipartition theorem.[37][38]  Simple  examples  are
provided by potential energy functions of the form

where C and s are arbitrary real constants. In these cases, the law of equipartition predicts
that

Thus, the average potential energy equals kBT/s, not kBT/2 as for the quadratic harmonic
oscillator (where s = 2).

More  generally,  a  typical  energy  function  of  a  one-dimensional  system  has  a  Taylor
expansion in the extension q:

Anharmonic oscillators
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for non-negative integers n. There is no n = 1 term, because at the equilibrium point, there is
no net force and so the first derivative of the energy is zero. The n = 0 term need not be
included, since the energy at the equilibrium position may be set to zero by convention. In
this case, the law of equipartition predicts that[37]

In contrast to the other examples cited here, the equipartition formula

does not allow the average potential energy to be written in terms of known constants.

The equipartition theorem can
be  used  to  derive  the
Brownian motion of a particle
from the Langevin equation.[5]

According  to  that  equation,
the  motion  of  a  particle  of
mass  m  with  velocity  v  is
governed by Newton's  second
law

Brownian motion

Figure 7. Typical Brownian motion of a particle in three
dimensions.
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where Frnd is a random force representing the random collisions of the particle and the
surrounding molecules, and where the time constant τ reflects the drag force that opposes
the particle's  motion through the solution.  The drag force is  often written Fdrag  = −γv;
therefore, the time constant τ equals m/γ.

The  dot  product  of  this  equation with  the  position vector  r,  after  averaging,  yields  the
equation

for Brownian motion (since the random force Frnd is  uncorrelated with the position r).
Using the mathematical identities

and

the basic equation for Brownian motion can be transformed into

where  the  last  equality  follows  from  the  equipartition  theorem  for  translational  kinetic
energy:

The above differential  equation for  (with suitable  initial  conditions)  may be solved
exactly:

On small time scales, with t << τ, the particle acts as a freely moving particle: by the Taylor
series of the exponential function, the squared distance grows approximately quadratically:
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However, on long time scales, with t >> τ, the exponential and constant terms are negligible,
and the squared distance grows only linearly:

This  describes  the  diffusion  of  the  particle  over  time.  An  analogous  equation  for  the
rotational diffusion of a rigid molecule can be derived in a similar way.

The equipartition theorem and the related virial theorem have long been used as a tool in
astrophysics.[39]  As  examples,  the  virial  theorem  may  be  used  to  estimate  stellar
temperatures or the Chandrasekhar limit on the mass of white dwarf stars.[40][41]

The average temperature of  a  star can be estimated from the equipartition theorem.[42]

Since most stars are spherically symmetric, the total gravitational potential energy can be
estimated by integration

where M(r)  is  the mass  within a  radius  r  and ρ(r)  is  the  stellar  density  at  radius  r;  G
represents the gravitational constant and R the total radius of the star. Assuming a constant
density throughout the star, this integration yields the formula

where M is the star's total mass. Hence, the average potential energy of a single particle is

where N  is the number of particles in the star. Since most stars are composed mainly of
ionized hydrogen, N equals roughly M/mp, where mp is the mass of one proton. Application
of the equipartition theorem gives an estimate of the star's temperature

Substitution of the mass and radius of the Sun yields an estimated solar temperature of T =

Stellar physics
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14 million kelvins, very close to its core temperature of 15 million kelvins. However, the Sun
is much more complex than assumed by this model—both its temperature and density vary
strongly  with  radius—and  such  excellent  agreement  (≈7%  relative  error)  is  partly
fortuitous.[43]

The same formulae may be applied to determining the conditions for star formation in giant
molecular clouds.[44] A local fluctuation in the density of such a cloud can lead to a runaway
condition in which the cloud collapses inwards under its own gravity. Such a collapse occurs
when the equipartition theorem—or, equivalently, the virial theorem—is no longer valid, i.e.,
when the gravitational potential energy exceeds twice the kinetic energy

Assuming a constant density ρ for the cloud

yields a minimum mass for stellar contraction, the Jeans mass MJ

Substituting the values typically observed in such clouds (T = 150 K, ρ = 2 × 10−16 g/cm3)
gives an estimated minimum mass of 17 solar masses, which is consistent with observed star
formation. This effect is also known as the Jeans instability, after the British physicist James
Hopwood Jeans who published it in 1902.[45]

The original formulation of the equipartition theorem states that, in any physical system in
thermal  equilibrium,  every  particle  has  exactly  the  same  average  translational  kinetic
energy, (3/2)kBT.[46] This may be shown using the Maxwell–Boltzmann distribution (see
Figure 2), which is the probability distribution

for the speed of a particle of mass m  in the system, where the speed v  is the magnitude

Star formation

Derivations

Kinetic energies and the Maxwell–Boltzmann distribution
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 of the velocity vector

The  Maxwell–Boltzmann  distribution  applies  to  any  system  composed  of  atoms,  and
assumes only a canonical ensemble, specifically,  that the kinetic energies are distributed
according to their Boltzmann factor at a temperature T.[46] The average translational kinetic
energy for a particle of mass m is then given by the integral formula

as stated by the equipartition theorem. The same result can also be obtained by averaging
the particle energy using the probability of finding the particle in certain quantum energy
state.[35]

More  generally,  the  equipartition  theorem  states  that  any  degree  of  freedom x  which
appears in the total energy H only as a simple quadratic term Ax2, where A is a constant, has
an average energy of ½kBT in thermal equilibrium. In this case the equipartition theorem
may be derived from the partition function Z(β), where β = 1/(kBT) is the canonical inverse
temperature.[47] Integration over the variable x yields a factor

in the formula for Z. The mean energy associated with this factor is given by

as stated by the equipartition theorem.

General derivations of the equipartition theorem can be found in many statistical mechanics
textbooks, both for the microcanonical ensemble[5][9] and for the canonical ensemble.[5][33]

They involve taking averages over the phase space of  the system, which is  a  symplectic
manifold.

To explain these derivations, the following notation is introduced. First, the phase space is
described  in  terms  of  generalized  position  coordinates qj  together  with  their  conjugate
momenta pj. The quantities qj completely describe the configuration of the system, while the
quantities (qj,pj) together completely describe its state.

Quadratic energies and the partition function

General proofs
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Secondly, the infinitesimal volume

of the phase space is introduced and used to define the volume Σ(E, ΔE) of the portion of
phase space where the energy H of the system lies between two limits, E and E + ΔE:

In this expression, ΔE is assumed to be very small, ΔE << E. Similarly, Ω(E) is defined to be
the total volume of phase space where the energy is less than E:

Since ΔE is very small, the following integrations are equivalent

where the ellipses represent the integrand. From this, it follows that Γ is proportional to ΔE

where ρ(E) is the density of states.  By the usual definitions of statistical  mechanics,  the
entropy S equals kB log Ω(E), and the temperature T is defined by

In the canonical ensemble, the system is in thermal equilibrium with an infinite heat bath at
temperature T (in kelvins).[5][33] The probability of each state in phase space is given by its
Boltzmann factor times a normalization factor , which is chosen so that the probabilities
sum to one

where β = 1/kBT. Using Integration by parts for a phase-space variable xk the above can be
written as

The canonical ensemble
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where dΓk = dΓ/dxk, i.e., the first integration is not carried out over xk. Performing the first
integral between two limits a and b and simplifying the second integral yields the equation

The first term is usually zero, either because xk is zero at the limits, or because the energy
goes to infinity at those limits.  In that case, the equipartition theorem for the canonical
ensemble follows immediately

Here, the averaging symbolized by  is the ensemble average taken over the canonical
ensemble.

In the microcanonical ensemble, the system is isolated from the rest of the world, or at least
very weakly coupled to it.[9] Hence, its total energy is effectively constant; to be definite, we
say that the total energy H  is  confined between E  and E+dE.  For a given energy E  and
spread dE, there is a region of phase space Σ in which the system has that energy, and the
probability of  each state in that region of  phase space is  equal,  by  the definition of  the
microcanonical ensemble. Given these definitions, the equipartition average of phase-space
variables xm (which could be either qkor pk) and xn is given by

where  the  last  equality  follows  because  E  is  a  constant  that  does  not  depend  on  xn.
Integrating by parts yields the relation

The microcanonical ensemble
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since the first term on the right hand side of the first line is zero (it can be rewritten as an
integral of H − E on the hypersurface where H = E).

Substitution of this result into the previous equation yields

Since  the equipartition theorem follows:

Thus, we have derived the general formulation of the equipartition theorem

which was so useful in the applications described above.

The  law  of  equipartition  holds  only  for  ergodic  systems  in  thermal  equilibrium,  which
implies  that  all  states  with  the  same  energy  must  be  equally  likely  to  be  populated.[9]

Consequently, it must be possible to exchange energy among all its various forms within the
system, or with an external heat bath in the canonical ensemble. The number of physical
systems that have been rigorously proven to be ergodic is small; a famous example is the
hard-sphere system of  Yakov Sinai.[48]  The requirements  for  isolated systems to  ensure
ergodicity—and,  thus  equipartition—have been studied,  and provided motivation for  the
modern chaos theory of  dynamical  systems.  A chaotic  Hamiltonian system need  not  be
ergodic, although that is usually a good assumption.[49]

A commonly cited counter-example where energy is not shared among its various forms and
where equipartition does not hold in the microcanonical ensemble is a system of coupled
harmonic oscillators.[49] If the system is isolated from the rest of the world, the energy in
each normal mode is constant; energy is not transferred from one mode to another. Hence,
equipartition does not hold for such a system; the amount of energy in each normal mode is
fixed at  its  initial  value.  If  sufficiently strong nonlinear terms are present in the energy
function, energy may be transferred between the normal modes, leading to ergodicity and
rendering the law of equipartition valid. However, the Kolmogorov–Arnold–Moser theorem

Limitations

Requirement of ergodicity
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states that energy will not be exchanged unless
the nonlinear perturbations are strong enough;
if  they  are  too  small,  the  energy  will  remain
trapped in at least some of the modes.

Another way ergodicity can be broken is by the
existence  of  nonlinear  soliton  symmetries.  In
1953,  Fermi,  Pasta,  Ulam  and  Tsingou
conducted computer simulations of a vibrating
string  that  included  a  non-linear  term
(quadratic in one test,  cubic in another, and a
piecewise linear approximation to a cubic in a
third).  They  found  that  the  behavior  of  the
system was quite different from what intuition
based on equipartition would have led them to
expect.  Instead  of  the  energies  in  the  modes
becoming equally shared, the system exhibited a
very complicated quasi-periodic behavior.  This
puzzling  result  was  eventually  explained  by
Kruskal and Zabusky in 1965 in a paper which,
by  connecting  the  simulated  system  to  the
Korteweg–de  Vries  equation  led  to  the
development of soliton mathematics.

The law of equipartition breaks down when the
thermal  energy  kBT  is  significantly  smaller  than  the  spacing  between  energy  levels.
Equipartition no longer holds because it is a poor approximation to assume that the energy
levels form a smooth continuum, which is required in the derivations of the equipartition
theorem  above.[5][9]  Historically,  the  failures  of  the  classical  equipartition  theorem  to
explain specific heats and blackbody radiation were critical in showing the need for a new
theory of matter and radiation, namely, quantum mechanics and quantum field theory.[11]

To  illustrate  the  breakdown  of  equipartition,  consider  the  average  energy  in  a  single
(quantum) harmonic oscillator, which was discussed above for the classical case. Neglecting
the irrelevant zero-point energy term, its quantum energy levels are given by En = nhν,
where h is the Planck constant, ν is the fundamental frequency of the oscillator, and n is an
integer. The probability of a given energy level being populated in the canonical ensemble is
given by its Boltzmann factor

Figure 9. Energy is not shared among the
various normal modes in an isolated system
of ideal coupled oscillators; the energy in
each mode is constant and independent of
the energy in the other modes. Hence, the
equipartition theorem does not hold for such
a system in the microcanonical ensemble
(when isolated), although it does hold in the
canonical ensemble (when coupled to a heat
bath). However, by adding a sufficiently
strong nonlinear coupling between the
modes, energy will be shared and
equipartition holds in both ensembles.Failure due to quantum effects
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where  β   =  1/kBT  and  the
denominator Z is the partition
function,  here  a  geometric
series

Its average energy is given by

Substituting the formula for Z gives the final result[9]

At high temperatures, when the thermal energy kBT is much greater than the spacing hν
between energy levels, the exponential argument βhν is much less than one and the average

Figure 10. Log–log plot of the average energy of a quantum
mechanical oscillator (shown in red) as a function of temperature.
For comparison, the value predicted by the equipartition theorem is
shown in black. At high temperatures, the two agree nearly
perfectly, but at low temperatures when kBT << hν, the quantum
mechanical value decreases much more rapidly. This resolves the
problem of the ultraviolet catastrophe: for a given temperature, the
energy in the high-frequency modes (where hν >> kBT) is almost
zero.
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energy becomes kBT, in agreement with the equipartition theorem (Figure 10). However, at
low temperatures, when hν >> kBT, the average energy goes to zero—the higher-frequency
energy  levels  are  "frozen  out"  (Figure  10).  As  another  example,  the  internal  excited
electronic states of a hydrogen atom do not contribute to its specific heat as a gas at room
temperature, since the thermal energy kBT  (roughly 0.025  eV) is much smaller than the
spacing between the lowest and next higher electronic energy levels (roughly 10 eV).

Similar  considerations apply whenever the energy level  spacing is  much larger than the
thermal energy. This reasoning was used by Max Planck and Albert Einstein, among others,
to resolve the ultraviolet catastrophe of blackbody radiation.[50] The paradox arises because
there are an infinite number of independent modes of the electromagnetic field in a closed
container, each of which may be treated as a harmonic oscillator. If each electromagnetic
mode were to have an average energy kBT, there would be an infinite amount of energy in
the container.[50][51] However, by the reasoning above, the average energy in the higher-
frequency modes goes to zero as ν goes to infinity; moreover, Planck's law of black body
radiation, which describes the experimental  distribution of energy in the modes,  follows
from the same reasoning.[50]

Other,  more  subtle  quantum  effects  can  lead  to  corrections  to  equipartition,  such  as
identical  particles  and  continuous  symmetries.  The  effects  of  identical  particles  can  be
dominant at very high densities and low temperatures. For example, the valence electrons in
a  metal  can  have  a  mean  kinetic  energy  of  a  few  electronvolts,  which  would  normally
correspond to a temperature of  tens of  thousands of  kelvins.  Such a state,  in which the
density is high enough that the Pauli exclusion principle invalidates the classical approach,
is called a degenerate fermion gas. Such gases are important for the structure of white dwarf
and  neutron  stars.  At  low  temperatures,  a  fermionic  analogue  of  the  Bose–Einstein
condensate (in which a large number of identical particles occupy the lowest-energy state)
can form; such superfluid electrons are responsible for superconductivity.

Kinetic theory
Quantum statistical mechanics
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